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1. Two infinite-dimensional spaces, and .

In a paper by H. Bohr and the author [1]—and more detailed 
in [2]— a connection between two infinite-dimensional spaces 

was established. We shall state explicitly those of the results 
which will be used in the sequel.

The space consists of all points a? = •• •) with
a countable number of coordinates which are arbitrary real 
numbers. The convergence notion in 9Î00 is defined by conver
gence in each of the coordinates, i. e. (x™, x2, •••)-> (aq, x2, •• •) 
if x” —> æg x2’ This convergence notion arises from a 
topology defined by help of neighborhoods of (0,0, • • •) 
where Ujq f (N positive integer, £ > 0) consists of all ./• = 
— (oq, x2, • • •) with I x{ I < £ for z = 1,2, • • - , N.

The space consists of all points ft — (zzt, zz2, • • •) with 
a countable number of real coordinates, hut so that they are 
all zero from a certain step (depending on the point), i. e. an — 0 
for n>N = N(ft). By the topology chosen in —we need not 
state it here—the module of integral points in i. e. the points 
with mere integral coordinates, is discrete.

I7 or an arbitrary closed module M in Üî30 we define its dual 
module M' in as the set of points ft in SR» for which

ft • jc = <z1 .rt + a2 x2 + • • • = 0 (mod 1) for every jceM.

Il is a closed module in -)ix (in the topology only referred to). 
We also introduce the analogous definition when is a closed 
module in •l(x.

By a substitution jc = Tt/ in SÍ50 we understand a linear 
transformation of the form

æi = «ti th + «12 í/2 H---------------H o1P1 i/P1

^2 = «21 J/l + «22 f/2 + • • • + «2p2 f/p2 
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which establishes a one-to-one mapping of 34x on (the whole) 
3400. It turns out to be the same as a linear, one-to-one, hicon- 
linuous transformation of 34x onto itself.

The following theorems were proved.

Theorem A. A closed module in I he infinite-dimensional space 
3400 is a point set E which by a substitution can be transformed 
into a point, set of a special form, in the following denoted by 
Sx, namely a point set ((y{, y.,. • • •)/ °f the following structure: 
The indices 1,2, • • - , n, ■ ■ ■ can be divided into three fixed classes 
(zzr}, \z\)’ slK'h that the coordinates yn independently ran 
through all numbers, and the coordinates y independently run
through all integers, while all the remaining coordinates yn are
constantly zero. Conversely, each such point sel E is a closed module.

Theorem B. If .1/ zs a closed module in 34s0 or in 34x, then the
dual module M" of its dual module M' is the module M itself, i. e.

M" = M.

2. The Pontrjagin—van Kampen duality theorems.

Let G be a locally compact abelian group satisfying the se
cond axiom of countability. We use the additive notation for 
the group. By a continuous character on G we understand (ep. 
[4], p. 127) a real multi-valued function a (x) uniquely defined 
modulo 1 on G with the properties

1. « (.r + y) « (.r) + « (y) (mod 1).
2. To every e>() can be found a neighborhood F of 0 such 

that I « (<r) I (mod 1) for xeF.
We organize the set of continuous characters on G so that 

it becomes a topological group. The sum («t + «.2)(.r) of two 
characters (.r) and a2 (,v) is defined by (eq + w2) (æ)

aL (.t) + «2 Cr) • With this addition the characters form a group. 
The zero-element is the character « (.r) 0. Corresponding to
every e > 0 and every compact sel F in G we define a neighbor
hood of the zero-character as the set of characters ic(x) satisfying

a(x)I< e (mod 1) for xeF.



Nr. 19 5

In this way the group of characters becomes a topological group. 
We call it the character group of (1 and denote it by G.

Pontrjagin ([4], p. 128) showed that G is also a locally com
pact group satisfying the second axiom of countability, and 
furthermore he proved the following two fundamental theorems1.

Theorem 1. For a group G of the type mentioned the character 
group G of the character group G is isomorphic with the group 
G itself, i. e.

G ■> G.

The isomorphism between G and G is realised in the natural way 
that the element xeG corresponds to the character %(ct) — a (x) 
on G.

Theorem 2. Let II be a subgroup of a group G of the type 
mentioned. If H*  denotes the set of characters on G which are = 0 
on H, and analogously H**  denotes the set of characters on G which 
ore = 0 on H*  then the set H**  by the identification of G with 
G is identical with the set H, i. e.

H**  = II.

The purpose of this paper is lo prove the following special 
case of these theorems by help of the connection between the 
spaces and

Simpler Pontrjagin duality theorems. For compact and for dis
crete abelian groups satisfying the second axiom of countability 
the theorems 1 and 2 are valid, liy the operation of passing to 
the character group, a group of one of the two types is transformed 
into a group of the. other type.

A group of the first type is in the sequel abbreviatively 
referred to as a compact group. A group of the second type, i. e. 
a countable discrete abelian group, is referred to as a discrete 
group.

By help Qf these simpler duality theorems and an investigation 
of the structure of locally compact groups, Pontrjagin and van 
Kampen obtained the theorems 1 and 2 in the general case.

In this full generality first bÿ van Kampen ([4], p. 126).
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3. A realization of a compact group as a factor 
group inside 9i°°.

In this section we shall prove a theorem about a concrete 
way of realizing every compact group. For theorems used in 
the proof we shall, as before, refer the reader to [4].

Theorem. Every compact y roup G is isomorphic lo a factor 
group M/1 where 1 is the module of integral points in and M 
is a closed module in 3400 containing I. The topology of M/I is 
given in the natural may by help of the topology in SR80. Conper- 
sely, every factor group M/I of the type mentioned, is a compact 
group.

For the proof we take our starling point in the following 
theorem ([4], p. 46):

Urysohn’s lemma. I.et ll be a compact regular topological space 
satisfying the second axiom of countability, and let E and F be 
two of its non-intersecting closed subsets. Then there exists a con
tinuous function f(x) defined on II such that 0</(x)<l for 
xeR, f(x) = 0 for xeE, and /'(x) = 1 for xeF.

Now, let E be a single point a in II and take a countable 
complete system of neighborhoods of a: U2, • • •. For F succes
sively equal to 11 — L\,R—U2, ••• we construct by Urysohn’s 
lemma the functions /'t (x),/2 (x), • • •. The function

is then a continuous function on II with g (a) = 0 and 9 (x) > 0 
for x

We may apply this to the compact group G above since the 
underlying space of a topological group is always regular ([4], 
j). 56). Let a be chosen as the zero of the group. In this way 
we get a continuous function <7 (x) on G with <7 (0) — 0,.q(x)>9 
for x 0.

As a continuous function on a compact group, g(x) is uniformly 
continuous and hence also almost periodic. Thus g (x) is a con
tinuous almost periodic function on G. We shall use the unicity 
theorem for Fourier series of continuous almost periodic functions 
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on a topological abelian group. Concerning the fact that we use 
such a deep-lying theorem we may remark that the main result 
of the Peter-Weyl theory on continuous functions on compact 
abelian groups, viz. the possibility of approximating every con
tinuous function on the group by a linear combination of func
tions e27Iln(x)) js at the bottom of all proofs of the duality theo
rems. For a proof of the main results in the theory of almost 
periodic functions on an abelian group which utilizes the abelian 
type of the group, see my paper [3]. There no topology was 
considered, but it is a well-known and obvious fact that if such 
a topology exists and the almost periodic function /(æ) is con
tinuous, then the characters in its Fourier series are all continu
ous since C e27FZfin(T) = Af {/ (x—/)e2lifL(/)) where f(x) is uni- 

t 
formly continuous.

Let our function (j (,r) above have the Fourier series
00

n = 1

To the arbitrary element h in G we consider the translated 
function

X

/ i i \ X 271 ic (/i) „271 fee (X)r/br + h)^ Cne e n .
n= 1

If an (h) = () for /i — 1, ?,•••, then /i must be equal to 0, 
for on account of the unicity theorem (x +/?) = i/(.r), in parti
cular <7 (/z) = (0) = 0.

We now map the arbitrary element /ieG in the points 
(cq (h), «2 (h), • • •) in <R°°; these points form a coset in 
modulo the integral module I, i. e. an element in fR00//. Let 
the image of G in ÍR30 be (the module) Af. Then, G considered 
as an abstract group is mapped isomorphically on M/1 considered 
as an abstract group. Moreover, this mapping of the topological 
group G is continuous when the topology in 9í°°/Z is given in 
the natural way by the topology in St50. Since G is compact 
and M/I is a regular topological space satisfying the second 
axiom of countability, the mapping is bicontinuous ([4], p. 44). 
Hence we have an isomorphic mapping of the topological group 
G on the togological group M/I,
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G - MI.

As the image of a compact space by a continuous mapping, 
Mil is closed in This implies that the image M of G in

is closed in <R°° (since otherwise we could choose a se
quence in M converging to a point not in M, and the correspond
ing sequence in Mil would then converge to the corresponding 
point in 9Î00//, a point outside of Mil}. Hence M, in the reali
zation of G above, is a closed module in 9x°°.

Conversely, every factor group M I, where M is a closed 
module in containing the integral module I, is a compact 
group since a sequence of points in M can be reduced modulo 1 
to lie in the compact set 0 < xq < 1,0 < x2 < 1, • • • (the second 
axiom of countability being obviously fulfilled).

4. Proof of the simpler duality theorems.

Let G be a compact group. We make use of the theorem 
of the preceding section which stales that we can realize G as 
a factor group Ml I inside ■Hx. By help of this we shall see that 
the character group G can be realized as a factor group inside

Let a (AT be a continuous character on Mil where X is a 
variable coset in M modulo /. We put «(ar) = « (X) for every 
æeX. In this way we get a continuous character «(.*')  on M. 
Our first task is to show that

a (a?) ax where we9îx.

To see this we choose by theorem A a substitution ./• = 7'// 
in 91°° which transforms M into a module {G/i,í/2. ••)) °f Uie 
simple form Sx. Since M contains I, the class {n? from theorem 
A must be empty. By this substitution the continuous character 
a (ar) on M is transformed into a continuous character ß (//) = 
= a (Ti/) on the transformed module {(y,, y2, •••)) = {(arbitrary, 
integral)}. Now, let

ß (i/t, 0,0,-) = /q ?/1

ß (0, y2, (),•••) = h2 y2
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where in case yn is of “integral” type we may assume bn redu
ced modulo 1 to lie in the interval 0 < b < 1. (It has been used 
here that a continuous character y(.x) on the straight line, and 
on the integers, has the form y (,r) b.r.) Then

(1/1 ’ Í/2 ’ f/n’ ()’ °’ •’•) ^1/1 +^1/2 4-------H\//n,
but for n->oc

(f/i > f/2> • • ' ’ - 0 ’ () ’ •••)-> (i/i » I/ - > • • • )

and hence from the continuity of ß the sequence

(0 ^11/1 + ^2 1/2 4-----+ /?nl/,l

shall converge modulo 1 for every (f/i, l/2, ’ 'bom the trans
formed module.

Suppose now that bn was not = 0 for n> a certain N. Then 
there would exist a sequence n1</?2<-- - such that bn 0 for 
j) — 1,2, • • •. To obtain a contradiction we shall indicate a point 
from the transformed module such that the sequence (1) is not 
convergent modulo 1. We pul yn = 0 if bn = 0. For the n with 
bn 4= 0, i. e. /q, /q, we choose yn by induction. z/n is chosen 
in accordance with its type (arbitrary or integral). Suppose yn 
chosen. Then we shall determine such that the numerical
difference modulo 1 between

(2) Un, + bn2 lln2 4-----------4 bnp Unp

and
bn, tin. + bn2 Un2 + * * ’ + bn l]n T bn 1/n

11 2*2  p p p + 1 p + 1

such that

(3) 1).

If yn¡ ] is of the “arbitrary” type we only choose yn such 

that P,, y.. — - which satisfies (3). If i/„ is of the
np + i J"y+i 2 J p + i

“integral” type we write ^n,+ 1> which is lying in the interval 
0 < b < 1, as a dyadic fraction. Since not all ciphers after the
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“point” in the fraction are zero or one we may choose un as a 
' p + 1power of 2 such that the first ciphers after the “point” in bn

iin are 01 or 10. Then bn un reduced modulo 1 to the_ p + i "p + i p + i
interval 0 </? < 1 must in the first case lie in the interval 
1.1. . . 13

</> < and in the second case in the interval < b < . In 

both cases (3) is satisfied.
For this choice of the point (z/t, z/2, • ■ •) from the transformed

module it is obvious that (1) cannot converge modulo 1 since 
the distance modulo 1 between consecutive elements in the

subsequence (2) is always > 1
4 ’

Thus we have seen that

A(//) = z<(7’//) b ■ !f with 
and then

«(./•) = 1 ./•) b-T 1 ,r = a • .X' with

where « is determined by b-T 1 .r = «./•.

On the other hand every function a (./•) « ./• with
obviously is a continuous character on M. But in order that it 
has aiisen from a (continuous) character on MI a necessary 
and sufficient condition is that

«(./•) ft ■ ,x‘ 0 for a?E/

and this means ft&T where T is the dual module in 9ix of /, 
i. e. the module of integral points in 9ix (see 1). Now, however, 
different «’s in I' may determine the same character on M, 
in fact

for '* ‘tM

means — ft2eM' where M' is the dual module in Tx of M 
(see 1).

Hence, considered as abstract groups, the character group 
of M I and the group T/M' are isomorphic. Furthermore the 
arbitrary continuous character it (.V) on M I is

«(Ar) = A A' with Ae/7M' (ATM /)

(the product A • A being defined by help of representatives « 
and jo of A and A’).
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The topology which is ascribed to the group Z'/A/' in 9?» is 
the discrete one since already /' is discrete (see 1). This, how
ever, is also the topology ascribed to it as the character group 
of a compact group, for if in G we consider the neighborhood 

of the zero-character determined by F = G and e = it consists 
of the characters a with

|a(.r)|<4 (mod 1) for xeG,

and the zero-character is the only such character. In fact, if 
« (x') 0 for an element x'eG we could find a power 2A of 2 

such that I« (2Næ')|>y (mod 1) (see top of p. 10).
4

Hence we have the result that the character group of G ^M/I is

G I'/M'.

To prove theorem 1 for a compact group G we have to prove 
that the character group of I'/M' is isomorphic to M/I by the 
correspondence mentioned in theorem 1. Let /(d) be a (continu
ous) character1 on I'/M'. For every we A we put x (w) = z(A). 
Then / (w) is a character on I'. Assume that

Z (1,0,0, •••) = xx
X (0, 1,0, • • ■ ) = x2

Then obviously

X (w) ~ a? • w with æ = (x*i , x2, • • • ) e9î°° .

On the other hand every function x(ir) JC • <t with æeÎR00 
is a character on But in order that it arises from a character 
on I'/M' a necessary and sufficient condition is that

X (w) = xa 0 for weM'

which by theorem B means that .rE.W" = M. Now, however, 
different ac’s in M may determine the same character on in fact

ar*i  • w = .r2 • w for w e/'

means — .r2 e/ ' = I.

They are all continuous since the group is discrete.
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Hence, considered as abstract groups, the character group of 
I' M' and the group M/1 are isomorphic. Furthermore an arbi
trary character /(A) on I'/M' has the form

Z(A) = A'-A with XsM I (At I'/M').

We shall now see that the topology of MI considered as a 
character group of I’/M' coincides with the topology of M I 
induced by the topology in 9t°°.

In the first topology a neighborhood of zero is determined 
by an £>0 and a compact set F from I'/M', and since I'M' is 
discrete F consists of a finite number of elements At, A2, • • - , A v 
from I'/M’. The neighborhood consists of all XtM/l with

(4) I A'- An I < £ (mod 1), n — 1 , 2 , ■ • •, A’.

We now consider an arbitrary neighborhood of zero in the 
other topology. Il consists of the XtM/I for which a represen
tative jc — (xi,x2, •••) satisfies

(5)

.rl|<£ (mod 1) 

.r2 I < £ (mod 1)

.vv|<£ (mod 1)

where £>0, and .V is a positive integer. In order to find a 
neighborhood (4) in the first topology contained in this neigh
borhood (5) we use the same £ and A’ in (4) as in (5) and 
choose for A^Ag^-'jA^ the (not necessarily different) cosets 
with the respective representatives ( 1,0, 0,■••), (0, 1,0,•••),•••, 
(I), 0, 0, • •0, 1,0, 0, • • •). In fact, for this choice the neighbor
hood (4) will coincide with (5).

Conversely, given an arbitrary neighborhood (4) it is possible 
to choose £ and A" in (5) such that the neighborhood (5) is 
contained in the neighborhood (4). This is true since the An 
have integral a as representatives in

Hence the two topologies are equivalent, and we have the 
result that the correspondence from theorem 1 is an isomorphism
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This proves theorem 1 for a compact group G.
Theorem 1 for the case of a discrete group which is written 

in the form G where G is compact, follows from the result above. 
In order to prove theorem 1 for an arbitrary discrete group it 
is therefore enough to prove that every such group is the char
acter group of a compact group, a fact which is also stated in 
the “simpler theorems” on p. 5. This is easily done. Let G be 
an arbitrary countable discrete group. We choose a system of 
generators ••• of G (for instance all elements in G). An 
arbitrary element ne G may be written

(6) a = a”1 «g2 • • ■.

We map a in the set of integral points (nt, n2, - --) of sJix for 
which (6) holds good. Let 0 by this procedure be mapped in 
the module 3/1. Then obviously

G - /7A/t.

Hence, from the result on p. 11 and theorem B, the group G is the 
character group of the compact group M’J I.

This proves theorem 1 for compact and discrete groups.
We now pass to the proof of theorem 2 for compact and 

discrete groups. Let G be a compact group and II a subgroup. 
By the isomorphism

G M/I

the set II corresponds to the set X// where X is a closed module 
in St00, IQNQAI. As found on pp. 10—11, the character group 
of M/I is I'/M' and an arbitrary continuous character a (Ar) on M/I 
is of the form

a (A) A • A (A eI'/M', Ae M/I).

We shall now pick out the characters which are = 0 on 
N/I, i. e. for which

A A 0 for AeX/Z,

but this means (by the definition of dual module, p. 3) that the 
A’s from I'/M' shall be taken from the subset N'/M'.
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We repeal the procedure. As found on p. 12, an arbitrary 
character /(A) on 1'/M' has the form

/(A) AA (Ae.W I, AilW),

and we have to pick out the characters which are 0 on N'/M', 
i. e. for which

A-A 0 for AeA’7AT,

but this means (by the definition of dual module, p. 3) that the 
A’s from M/I shall be taken from the subset N"/I which by 
theorem B is equal to N/I, q. e. d.

Since G J'/M' is an arbitrary discrete group and H*  N'/M' 
is an arbitrary subgroup of G^I'lM’, the theorem 2 is also proved 
for a discrete group.
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